
OPERATOR'S MANUAL

- Control of the Cont

Printed in Japan 71. 8-1

FOR
N - 401
MULTITESTER

WARNING

TO BE SURE, a tester is a very useful instrument capable of measuring voltage, current and resistance. Naturally the object of measurement that it covers varies widely from high voltage to minute current. In addition, the input impedance across the measuring terminals ranges from a few ohms up to high megohm level as a measurement range is cut over.

CONSEQUENTLY, UTMOST CARE SHOULD BE USED IN THE OPERATION AND MAINTENANCE OF THE INSTRUMENT NOT TO BRING ON DANGER TO THE OPERATOR AS WELL AS TO THE INSTRUMENT ITSELF. ESPECIALLY WHEN A HIGH POWER SYSTEM IS MEASURED, NO OPERATION MISTAKE WHATEVER SHOULD BE ALLOWED. AN INSTRUMENT LONG LAID AWAY UNUSED OR AS DEFECTIVE SHOULD NEVER BE USED.

CONTENTS

1	GEN	ERAL DESCRIPTION	
	1.1	Introduction	3
	1.2	Benefits and Advantages	
	1.3	Specifications	6
	1.4	Framework	7
	1.5	Function of the Circuit Breaker	10
2	OPE	RATING INSTRUCTIONS	13
	2.1	Preliminaries	13
	2.2	Measuring DCV	13
	2.3	Measuring ACV	17
	2.4	Measuring High Voltage	20
	2.5	Measuring DCA	20
	2.6	Measuring ACA	22
	2.7	Measuring Ω	23
3	REFE	ERENCE INFORMATION	25
-	3.1	Unknown Quantity	25
	3.2	Selecting a Proper Range	25
	3.3	Taut-band and Pivot-held Movements Compared	25
4	SUP	PLEMENTARY DATA	26
	4.1	Schematic Diagram	26
	4.2	Arrangement of Parts	27
	4.3	List of Parts	28

1 GENERAL DESCRIPTION

1.1 Introduction.

The N-401 Multitester is furnished with two outstanding advantages over common multitesters. In the first place, a taut-band meter movement of $5\mu A$ is introduced in the instrument which is close in sensitivity to a galvanometer. Secondly an original automatic cut-out device provides the instrument with added performance ability. Familiar as you may be with test equipment, you are requested to read this manual carefully so that you may be fully acquainted with the eminent substance of this fine instrument, and turn to account the benefits that it can offer you for your engineering achievement.

1.2 Benefits and Advantages.

Automatic cut-out device. The moment there is an accidental overload at the input terminal, the circuit breaker functions and cuts it off from the internal circuit, thus safeguarding the instrument from damage.

The level action of the breaker is effected by equalizing the starting current by means of a diode circuit of multiple connection acting along with the breaker interconnected with the range selector switch.

Plain and simplified scale dial. The scale dial is tidied up by making the characteristic of the scale reading AC linear to be identical with the scale for reading DC. Usually a separate scale is provided for AC measurement on account of the non-linear characteristic of the rectifying diode. The rectifying circuit of the N-401 has a diode equalizer inserted which enables both DC and AC to be read on a common single scale.

80-division wide scale. Abolishing the usual 60-division scaling system of 3-6-12, the N-401 has, going a step ahead, adopted 80-division system of 4-8-16. The spacious scale dial is a distinctive feature of a large-size instrument.

Protective flank boards. The walnut tone flank boards of 9mm thick provide double safety to the instrument protecting it from shock and adding stability on the bench. They characterize the unique design of the N-401 Multitester.

30-position range selector switch. The N-401 is equipped with a 30-position selector switch with OFF setting. It was specifically made for use in this instrument covering almost all measurement needs.

Ultrasensitive $5\mu A$ indicator. The N-401 uses a taut-band suspension meter movement of $5\mu A$ full scale. Its minimal sensitivity resolution is $0.06\mu A$

for voltage measurement providing the instrument with ultrahigh sensitivity towering about conventional testers with by far the less measurement loss. The input impedance of $200k\Omega/V$ for the DCV range will be the highest ever expected of a tester.

On the other, the moving element of the indicator is held in position suspended by platinum-iridium alloy bands instead of usual point-contact suspension by bearings. Furthermore, hysteresis error which is maximum near the midscale is practically nil, and stable reading is always obtained.

Easy-to-read scale with intermediary markings. Usually, a tester scale is read in three ways marking the arc with identical lines, which naturally makes it hard to take readings along some scale line, for instance, 21 and 21.5 as illustrated. The N-401 has adopted dual scaling marking the divisions along the arc with alternate long and short lines making the reading a lot easier.

1.3 Specifications.

Measurement Ranges Available.

DCV: $(\pm) 0.16 \ 0.4 \ 1.6 \ 4 \ 8 \ 16 \ 40 \ 160$ $400 \ 800 \ 1.6k$ Input impedance— $200k\Omega/V$ for 40V and below $16M\Omega \text{ for } 160V$ $40M\Omega \text{ for } 160V$ $20M\Omega \text{ for } 400V \& 800V$

DCA: $(\pm)\frac{8\mu}{160m} = \frac{0.04m}{1.6} = \frac{0.4m}{16} = \frac{1.6m}{16} = \frac{4m}{160m} = \frac{16m}{160m}$ Voltage drop—Abt. 400mV (500mV for 160m)

ACV: 4 8 16 40 160 400 1.6k Input impedance— $5k\Omega/V$ for 16V & above at 50Hz

ACA: 1.6 16 Voltage drop-400mV

 Ω : Range— $\times 1$ $\times 10$ $\times 100$ $\times 1k$ $\times 10k$ Note. Underlined ranges are protected by the circuit breaker.

Allowance (level position).

Within $\pm 2\%$ f.s.d. for DC ranges. Within $\pm 3\%$ f.s.d. for AC ranges. Within $\pm 2\%$ of scale length for Ω ranges.

Error due to frequency.

Within ±1dB for 4V and 8V (AC) 50kHz~250kHz For other ranges—50Hz~5kHz es. One each 1.5V (UM-2) and 9V (006P)

Batteries. One each 1.5V (UM-2) and 9V (000F)

Size & Weight. 252×191×107mm & abt. 1.95kg

1.4 Framework (See inside of the front cover).

- ① Carrying handle. The rigid carrying handle may be used to position the instrument at a convenient viewing angle.
- Polarity switch. A turn of the switch measures positive and negative DC saving the trouble of reversing the test lead connections. This switch is now a must for inspecting FM and transistor circuits.
- 3 CUT-OUT RESET. When there is an overload at the input terminal, the circuit breaker acts and cuts it off totally from the external power. The breaker does not recover automatically, and the RESET button must be pressed to return the instrument to normal operating condition. Make a habit of pressing the botton before measurement: the breaker may, though rare, be activated unawares.
- Neon lamp. When the circuit breaker acts against an overload, the lamp lights to make it known to the operator. It goes out as overload is removed.
- (5) (6) Measurement terminals. These are the terminals used for most measurements. Except 1.6kV, DC and AC, the test leads are connected to them. The HV probe also uses these jacks.

- clusively for 1.6A, DC and AC. The circuit breaker is not connected to these terminals.
- (8) 9 Exclusive terminals for 16A, DC and AC. The circuit breaker is not connected to these terminals, too.
- © Exclusive terminal for 1.6kV DC. The positive lead is connected to this jack for 1.6kV DC. For the negative lead, use the -COM jack.
- Exclusive terminal for 1.6kV AC. The positive lead is connected to this jack for 1.6kV
 AC. The other lead goes to the -COM jack.

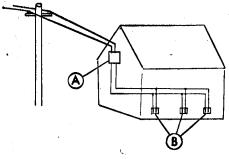
Note. For maximum safety to the operator in the event of misuse, the current measurement controlled by the range switch is limited to 160mA on the panel. If a current above 160mA is measured using the usual terminals, because the internal shunt resistance is very small (0.50 for 500mA DC), AC voltage erroneously applied to the current range of such a low impedance will allow several hundred amperes to flow into the instrument to the possible danger to the operator. It is beyond control of such a small capacity circuit breaker as accommodated in the instrument. Due consideration of safety to the

operator necessitates separate jacks to be used for current measurement above 160mA.

- 00 ADJ. For resistance measurement, the pointer must be adjusted to 00 each time the range is moved. The 00 adjuster is one of the most useful devices of a tester because it checks the consumption of the internal batteries at the same time. The pointer is adjusted by turning the adjuster with the + and -COM jacks shorted together.
- B Corrector screw. As a rule, a tester should be used in a level position. When the position is changed, the pointer may become unbalanced moving away from zero. It must then be corrected to be exactly on 0 by turning this screw with a screwdriver.
- Range selector knob. Measurements are generally controlled by this knob. The coloured knob is to select a range without mistake from among so many provided. When this knob is on the range specified below, the circuit breaker is ready to function.

Ω range -×1 ×10 ×100 DCV range-0.16V DCA range-8μA 0.04mA 0.4mA 1.6mA 4mA 16mA 40mA 160mA

1.5 Function of the Circuit Breaker.


Equalized sensitivity. The circuit breaker of the N-401 is started to action by the current of 1A applied. It is six times as much as the full scale current for 160mA DC. For other ranges the difference between the starting current and each full scale current is so big that a specific circuit is provided interlocked with the range selector switch to equalize the starting current for the breaker to act uniformly for all the ranges specified to be protected effectively.

The impedance of this control circuit is quite low, and it will exert bad influence on the regular circuit of the instrument. To remove the interference with the indicator circuit, an electronic switch is composed of multiple-connection silicon diodes of which the zener effect is 0.5V. This is again one of the most noteworthy achievements of the N-401 Multitester.

Small power and the breaker. The breaker does not act against a small power as may be obtained from a transformer. The high impedance of the rectifier or the resistance of the power transformer does not allow the current above 1A to flow into the tester even when a voltage is measured erroneously on a current range. If the measurement is dropped the instant the mistake is noticed, no damage will be done either to the instrument or to the power source.

However, care should be used all the more because the breaker does not function in this case. It will be the power source that suffers damage.

High power and the breaker. While measuring a power voltage at home or in a factory, the same type of mistake made at the point A and point B produces quite a big difference of current flowing into the instrument. (Fig. 2) In the case of B, current is restrained by the resistance of a switch or indoor wiring, and the breaker functions effectively against While in the case of A, there is such current. practically nothing to restrain the current, and a power voltage above 200V is perilous to the breaker Though a safety fuse (3A) inserted in itself. series with the breaker circuit may temporarily save the instrument from damage, no measurement mistake whatever should be allowed in the case of B Be sure to confirm the position measurement at A.

of the range selector switch to be correctly on an ACV range before the test prod is connected to the power.

- Note. (1) For the sake of safety, the use of Fused Test Lead is recommended for measurement of high power voltage. The probe is available extra.
- (2) When the safety fuse of the breaker al lagrais blown, the tester circuit remains open despite the RESET button pressed. is a little troublesome to replace the fuse, but the rear cover is removed and the fuse on the breaker is replaced. Use a 3A fuse available on the market. 1A fuse would be blown away prior to the breaker to act, while a fuse above 5A might cause the breaker to burn. Anyhow, so long as measurement is not abnormal, the breaker functions unfailingly against an overload and safeguards the instrument without blowing the fuse. At all events, used utmost care not to apply AC voltage to a low impedance circuit like resistance and current ranges of the instrument.

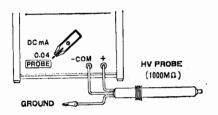
2.1 Preliminaries.

After the pointer is calibrated to zero of the scale left, the test leads are connected to the instrument and the battery voltage is checked. Continuity of the test leads and ready action of the circuit breaker can be confirmed by shorting the test leads together placing the range selector switch at a resistance range. If the pointer deflects, the instrument is ready for operation.

When resistance measurement is to follow, also adjust 00 reading. Exhausted batteries should be immediately replaced. Remove the cover plate on the rear where the batteries are housed. Take note of the polarity when replacing them.

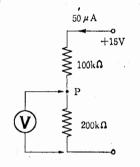
2.2 Measuring ±DCV.

BUSILERY


The polarity switch is turned to either DC+ or DC- according to the polarity of the voltage being measured. For 800V and below, the + and -COM jacks are used for test lead connections. For 1.6kV, the red lead goes to the DC 1.6kV jack $\widehat{\mathbb{D}}$.

DCV is measured on the 11 ranges from 0.16V through 1.6kV. In the

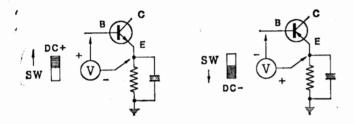
data relating to each range:


Range	Full scale	Input impedance	Minimum	Scale	Multiplied by:
0.16	0.1oV (16)mV)	32 k 🖸	2mV	0 – 13	0.01 for V 10 for mV
0.4	0. 1V	80 k Ω	5mV	0 40	0.01 for V 10 for mV
1.6	(100mV) 1.6V	320 k 🖸	20m V	0 – 16	0.1 for V
4	4 V	800 k 🖸	50mV	0 - 40	0.1 for V
8	8V	1.6M Q	0.1 V	0 - 8	1 for V
16	16 V	3. 2M Ω	$0.2\mathbf{V}$	0 – 16	1 for V
40	40 V	8M Ω	0.5 V	0 - 40	1 for V
160	1 6 0 V	16M Q	2 V	0 - 16	10 for V
400	400 V	20M Ω	5 V	0 - 40	10 for V
800 & 1.€k	800 V	20M Q	10 V	0 - 8	100 for V
,,	1.6kV	40M Ω	$20\mathbf{V}$	0 – 16	100 for V
0.01 PROBE	*30kV	1000M Ω	500 V	0 – 40	1 for kV

* High voltage measurement of the anode and focusing voltage of CRT for television use, etc. The range switch is placed at PROBE/0.04 and the HV probe $(1000M\Omega)$ is connected as shown in Fig. 3. The 0-40 line is used, but the reading is effective up to 30(kV).

Powerful $5\mu A$ instrument. trated, the clear voltage at P is 10V, which only a voltmeter of infinite impedance would read. The N-401 reads the most approximate value of 9.79V with an error of -2%. A so-called high sensitivity instrument of $20k\Omega/V$ will read it 7.5V with an error

In the circuit illus-



of -25%. For a low sensitivity tester, the error will be -63% reading it 3.73V.

The ability of a $200 k\Omega/V$ instrument is most eloquently demonstrated in the measurement of a high impedance load voltage of minute current most efficiently checking the voltage of a transistor circuit, DC amplifier, oscillating circuit, AVC and AGC circuits, etc. without disturbing the condition of the circuit being measured.

Polarity reversing switch. If the pointer deflects to the opposite direction across 0, just reverse the switch position; it is not necessary to reverse the connections of the test leads, and yet the -COM jack is always in negative potential. It is essential in the alignment of transistor and FM circuits to determine the potential of the voltage checked correctly.

Testing transistors and their discrimination. The simplest way of judging the quality of a transistor is to check its voltage drop across base and emitter on a DCV range and see if it is normal. The factors that group transistors into silicon and germanium, or PNP and NPN, are the size of the voltage drop and the polarity determination. They are classified as follows:

Voltage drop and polarity	Classified
0. 1V - 0. 3V	Germanium
0. 5V - 1. 0V	Silicon
DC+	NPN
DC-	PNP

In this measurement, the plus potential of the tester is always connected to the base (B) and the minus potential to the emitter (E) of the transistor being checked. The position of the polarity switch readily defines whether it is PNP or an NPN transistor.

2.3 Measuring ACV.

For 400V and below, the + and the -COM jacks are used for test lead connections. For 1.6kV, the positive lead goes to the AC1.6kV jack on the right. The polarity switch is turned to DC (AC \cdot Ω).

Quality germanium diodes of small reverse current loss compose the all-wave, symmetrical rectifying circuit. It has an equalizer incorporated to match the characteristic of the AC scale with that of the DC scale.

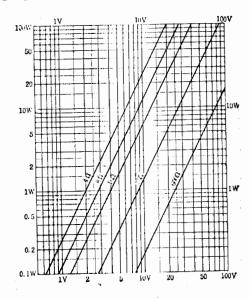
There are seven ACV ranges from 4V through 1.6kV. Refer to the following table for the data relating to the input impedance, frequency characteristic, etc. of each measurement range:

Full	Input impedance		Scale	Multi-	#2 Max.	#3	
scale	for 1kHz	for 10kHz	Scare	plied by	freq.	dB to correspond	
4V	15k Ω	15k 🖸	0 - 40	0.1	500kHz	-20 ~ +14	
8V	32k 🕰	32k 🖸	0 - 8	1	250kHz	-14 ~ +20	
16 V	80k Ω	80k Ω	0 – 16	1	18kHz	- 8~+26	
40V	200k △	200k Ω	0 - 40	1	6kHz	0~+34	
1€0 V	800k 🕰	500k Ω	0 – 16	10	5kHz	+12~+46	
400 V	1.8MQ	1МΩ	0 - 40	10	5kHz	+20~+54	
1 1.6kV	7M Ω	4M Ω	0 – 10	100 for V	5kHz		

- *1 The switch position is common with 400V.
- *2 Threshold frequency measurable with ±1dB allowance.
- *3 0dB corresponds to 0.775V (AC): 1mW into 600Ω.

As the table above shows, the frequency coverage of the lower ranges extends over audio zone, so that the instrument is available as an output voltmeter and a monitor meter in place of an electrotester. Joint use of the dB scale will obtain better result.

0 dB of the instrument is established at a voltage when 1 mW is dissipated across a 600Ω line, and the dB scale directly reads the output of a circuit coupled at the uniform impedance of 600Ω . For a circuit other than 600Ω , the dB value read on the instrument must be compensated according to the following table to obtain true output:


Load (Q)	Add dB	Load (Q)	Add dB	
2k	-5.2	150	+6	
1k	-2.2	75	+9	
600	0	50	+10.8	
500	+0.8	16	+15.8	
300	+3	8	+18.8	
200	+4.8	4	+21.8	

The input and output impedances of audio equipment are not necessarily uniform, and the volume level of each circuit read on the dB scale is nothing but each AC voltage read in dB corresponding to it. However, since the dB scale can express voltage ratio, the relative difference of the dB read may be available to record or compare in dB the ratio of the voltage variation; for example, input/output voltage ratio, frequency response, etc.

Output (W) measurement. Wattage is obtained from the following formula.

$$Output(W) = \frac{V^2}{Impedance}$$

Providing the tester reads 4V on its 10V AC range for a line impedance of 8Ω , $W = \frac{4^2}{8} = 2(W)$. Refer to the graph below.

2.4 Measuring High Voltage—1kV and up, AC/DC.

The following instructions should be strictly observed when measuring a circuit voltage above 1kV and that allied with high power source:

Before the instrument is connected to the circuit, be sure to turn off the power. A smoothing condenser in the circuit must be discharged so that no voltage could be present.

Reconfirm the correct position of the range switch and the proper connection of the test leads.

When the power switch is turned on and reading is noted on the scale, keep your hands off the instrument.

As the measurement is over, the power switch is turned off, but the test leads should not be removed until after the pointer returns to 0.

The instrument may be operated as usual when measuring the voltage of a high impedance circuit of television and communication equipment of small current capacity.

2.5 Measuring $\pm DCA-\mu A$, mA, A.

Voltage is measured in parallel with the load, but current is measured in series with it, for which the circuit under test must be opened and the instrument is connected in series with the load. If the pointer moves to the opposite direction across 0, the polarity switch is turned to the other side.

There are current ranges available from $8\mu A$ through 16A. Refer to the following table for the scale reading, voltage drop, etc. of each measurement range:

Range	Full scale	Mini- mum	Voltage drop	Scale	Multiplied by	Breaker
0.16(8µA)	8μΑ	0.1μΑ	160mV	0 - 8	1 for μA	Yes
0.04	$40\mu A$	0.5μΑ	$400 \mathrm{mV}$	0 – 40	" " "	,,
0.4	$400 \mu A$	5μΑ	"	"	10 for μA	"
1.6	1.6mA	20μA	"	0 – 16	0.1 for mA	,,
4	4mA	50μA	"	0 – 40	" " "	. "
16	16mA	200μA	"	0 – 16	1 " *	"
40	40mA	0:5mA	"	0 – 40	,, ,, ,,	"
160 & A	160mA	2nıA	500mV	0 – 16	" " "	"
. ,	*1.6A	20mA	400mV	0 – 16	0.1 for A	No
"	*16A	0.2A	,,	0 - 16	1 for A	"

^{*} Exclusive jacks are used.

From μA up to A level, the current ranges of the N-401 cover practically all measurement needs.

 8μ A sharing the range with 160mV on the selector switch consumes so small current that it is well available as a galvanometer and zero detector, while the 1.6A and 16A ranges are capable of checking power transistor circuits.

With more and more ICs introduced now, electronic circuits are increasingly liable to be split into blocks, and the current consumption check of each block is now considered to be a conclusive factor of diagnosing them. A good many current ranges the N-401 is provided with will be found very useful for this measurement.

2.6 Measuring ACA-1.6A, 16A.

The range switch is rotated to the ACA position.

The same jacks and the same scale are used as for

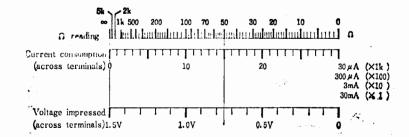
1.6A and 16A DC measurement.

Current is measured connecting the instrument in series with the load opening the circuit under test.

The N-401 uses the same shunts for 1.6A and 16A Here the DC for measurement of 1.6A and 16A AC. uniqueness of the SANWA Multitester is most freely displayed giving full play to its excellent performing ability despite the obligation of using a moving coil Various type indicator in a restricted space. characteristics of the common scale are well stabilized, and the AC current range can be extended by enlarg-This outing the shunts for DC measurement. standing feature not only checks home electrical appliances, but it affords the instrument to be used for checking AC current consumption of various electric appliances and for experimental and adjusting purposes.

2.7 Measuring Ω .

For preliminary operation, see 1.4 (12) for 0Ω adjustment, replacement of batteries, etc.

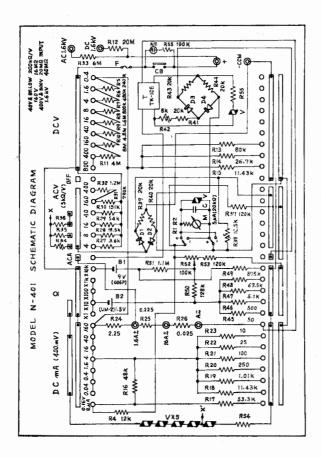

Five ranges are provided from $\times 1$ through $\times 10$ k for resistance measurement. Refer to the following table for the data relating to the measurement range, midscale reading, current consumption, etc. of each range:

Range	Mini- mum	Mid- scale	Full scale	Max. current consumption	Max. volt- age applied	Breaker
×1	1Ω	50 Ω	5k Ω	30mA	1.5V	Yes
× 10	10Ω	500 Ω	50k Ω	3mA	"	"
× 100	100 Ω	5k Ω	500k 🕰	300μ A	"	"
$\times 1k$	1kΩ	50k Ω	5M Ω	30μ A	"	No
*×10k	10k Ω	500k Ω	50M Ω	18μ A	$9\mathbf{V}$	"

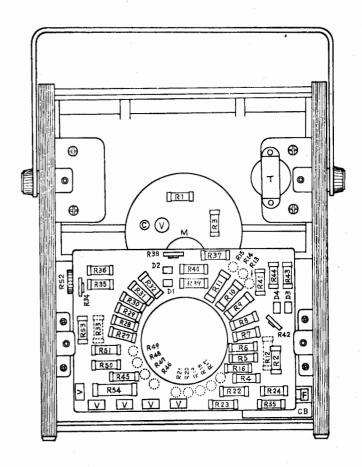
^{*} Uses 9V(006) battery; 1.5V(UM-2) for others.

As the schematic diagram shows, the polarity of the ohmmeter circuit is reversed, the + jack furnishing negative voltage, and the -COM jack positive voltage. It must be noted when testing the leakage of an electrolytic capacitor, polarized resistance of semiconductors like diodes and transistors.

The following graph shows how the scale reading, current consumption and the voltage applied for measurement are related each other:


REFERENCE INFORMATION

- 3.1 Unknown Quantity. When in doubt as to the voltage or current present, always start with the highest range. After the first reading, the switch can be reset to a lower range for a more accurate reading.
- 3.2 Selecting a Proper Range. For voltage and current measurements, try to use a range which will allow the pointer to fall within the right hand half of the scale. For resistance, accurate reading is obtained around in the middle of the scale.
- 3.3 Taut-band and Pivot-held Movements Compared. The N-401 is equipped with a supersensitive meter movement of $5\mu\mathrm{A}$. In order to raise accuracy making the best of its high sensitivity, the moving element is suspended by taut bands. Its merit and demerit as compared with a usual pivot-bearing movement will be as follows:


-	Merit	Demcrit
Pivot sus- pension	Good balance because of the stabilized contact suspension.	Friction error is liable; unsuitable for movement above $10\mu\Lambda$.
Taut-band suspension	No contact friction and no hysteresis error possible.	Balance taking difficult especially for large-size movement. Big trans- position error.

4 SUPPLEMENTARY DATA

4.1 Schematic Diagram

4.2 Arrangement of Parts

4.3 List of Parts

Part No.	Description	R.S.
N4R01	Resistor $(2.5k\Omega\sim3.5k\Omega)$ for mV calibration	R1
N4R02	Resistor (10kΩ) for mV calibration	R2
N4R03	Resistor (500kΩ~800kΩ) shunt	R3
N4R04	Resistor (12kΩ) series	R4
N4R05	Resistor (240kΩ) 1.6V DC multiplier	R5
N4R06	Resistor (480kΩ 4V DC multiplier	R6
N4R07	Resistor (800kΩ 8V DC multiplier	R7
N4R08	Resistor (1.6MΩ) 16V DC multiplier	R8
N4R09	Resistor (4.8MΩ) 40V DC multiplier	R9
N4R10	Resistor (8MΩ) 160V DC multiplier	R10
N4R11	Resistor (4MΩ) 400V & 800V DC multiplier	R11
N4R12	Resistor (20MΩ) 1.6kV DC multiplier	R12
N4R13	Resistor (80kΩ) 160V DC shunt	R13
N4R14	Resistor (26.7kΩ) 400V DC shunt	R14
N4R15	Resistor (11.43kΩ) 800 V DC shunt	R15
N4R16	Resistor (48kΩ) series	R16
N4R17	Resistor (53.3kΩ) 8μA DC shunt	R17
N4R18	Resistor (11.43kΩ) 0.04mA DC shunt	R18
N4R19	Resistor (1.01kΩ) 0.4mA DC shunt	R19
N4R20	Resistor (250Ω) 1.6mA DC shunt	R20
N4R21	Resistor (100Ω) 4mA DC shunt	R21
N4R22	Resistor (25Ω) 16mA DC shunt	R22
N4R23	Resistor (10Ω) 40mA DC shunt	R23
N4R24	Resistor (2.25Ω) 160mA DC shunt	R24
N4R25	Resistor (0.225Ω, wire) 1.6A DC & shunt	R25
N4R25	Resistor (0.225Ω, wire) 1.6A DC & AC shunt	R25

N4R27 Resistor (abt. 3.6kΩ) 4V AC mu	ıltiplier R27
N4R28 Resistor (abt. 18.6kΩ 8V AC mu	ltiplier R28
N4R29 Resistor (abt. 54.6kΩ) 16V AC	multiplier R29
N4R30 Resistor (abt. 152.4kΩ) 40V ΛC	multiplier R30
N4R31 Resistor (790kΩ) 160V AC multi	iplier R31
N4R32 Resistor (1.2MΩ) 400V AC mul-	
N4R33 Resistor (6MΩ) 1.6kV AC multip	plier R33
N4R34 Resistor (7kΩ~13kΩ) shunt	R34
N4R35 Resistor (20kΩ) shunt	R35
N4R36 Resistor (40kΩ) shunt	R36
N4R37 Resistor (120kΩ) ACV series	R37
N4R38 Resistor (8kΩ~12kΩ) shunt	R38
N4R39 Resistor (20kΩ) for rectifier circ	uit R39
N4R40 Resistor (20kΩ) for rectifier circ	uit R40
N4R41 Resistor (20kΩ) for ACA	R41
N4R42 Resistor (5kΩ~11kΩ) for ACA	R42
N4R43 Resistor (20kΩ) for rectifier circ	uit R43
N4R44 Resistor (20kΩ) for rectifier circ	uit R44
N4R45 Resistor (50Ω) $\Omega \times 1$ shunt	R45
N4R46 Resistor (500 Ω) $\Omega \times 10$ shunt	R46
N4R47 Resistor $(5.1k\Omega) \Omega \times 100$ shunt	R47
N4R48 Resistor (67.5k Ω) Ω ×1k shunt	R48
N4R49 Resistor (875kΩ) Ω ×10k shunt	R49
N4R50 Resistor (128kΩ) Ω series	R50
N4R51 Resistor (1.1M Ω) $\Omega \times 10$ k series	R51
N4R52 Potentiometer (100kΩ) for 0Ω as	djustment R52
N4R53 Resistor (120kΩ) shunt	R53
N4R54 Resistor (5.5Ω) for protection ci	ircuit R54
N4R55 Resistor (abt. 100kΩ) neon lamp	

FR05	Germanium diode, 4 required	D1-D4
B 002	Drycell (1.5V, UM-2)	B1
B 00 5	Drycell (9V, 006P)	B2
TR03	Transformer	T
M 016	Meter movement (5 µA, taut-band type)	M
N4SW1	Range selector switch w/resistor holder	
N4P01	Front panel (N-401 type)	
X 018	Rear case (N-401 type)	
N4T01	Terminal metal for UM-2 dry cell, 2 required	
N4T02	Studded terminal for 006P dry cell	
N4BC1	Battery case cover	
V 001	Varister, 7 required	v
Г002	Terminal jack, 7 required	
K013	Knob for range selector switch	
C050	Capacitor (0.05µF)	С
PSW1	Polarity reversing switch	
2019	Meter movement cover	
5007	Flank board w/holding metal, 2 required	
1002	Carrying handle w/fixing bolt (2)	
.001	Test lead, pair	
A02	Meter movement base	
E01	Neon lamp w/holder	
B01	Circuit breaker w/fuse (3A)-F	NE
7003	Rear case bolt, 4 required	CB

R.S. Reference symbol